Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530054

RESUMO

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Assuntos
Imunidade Inata , Microbiota , Lactente , Feminino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Leite Humano/química , Sistema Imunitário/metabolismo , Oligossacarídeos/análise , Bifidobacterium/genética
2.
J Clin Invest ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470479

RESUMO

CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV highlights their responsiveness to neuroinflammation.

3.
Elife ; 122024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385642

RESUMO

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.


Assuntos
Vacinas contra a AIDS , HIV-1 , Animais , Macaca mulatta , Quimiocina CXCL10 , Anticorpos Anti-HIV , DNA
4.
PLoS Pathog ; 19(12): e1011844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060615

RESUMO

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)-known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Linfócitos T CD4-Positivos , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Sistema Nervoso Central , Carga Viral
5.
Clin Nutr ; 42(12): 2528-2539, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931372

RESUMO

BACKGROUND: Maternal diet influences the milk composition, yet little information is available on the impact of maternal diet on milk miRNAs expression. Further, the association of human milk miRNAs to maternal diet and milk microbiota is not explored. In addition, the role of milk miRNAs on the infant gut microbiota, infant growth and development has not been investigated. METHODS: Milk samples were collected from 60 healthy lactating women at ≤15d post-partum, HTG transcriptome assay was performed to examine milk miRNA profile. Maternal clinical and dietary clusters information were available and infant anthropometric measures were followed up to one year of age. Milk and infant microbiota were analyzed by 16S rRNA gene sequencing and integrative multi-omics data analysis was performed to identify potential association between microRNA, maternal dietary nutrients and microbiota. RESULTS: Discriminant analysis revealed that the milk miRNAs were clustered into groups according to the maternal protein source. Interestingly, 31 miRNAs were differentially expressed (P adj < 0.05) between maternal dietary clusters (Cluster 1: enriched in plant protein and fibers and Cluster 2: enriched in animal protein), with 30 miRNAs downregulated in the plant protein group relative to animal protein group. Pathway analysis revealed that the top enriched pathways (P adj < 0.01) were involved in cell growth and proliferation processes. Furthermore, significant features contributing to the clustering were associated with maternal dietary nutrients and milk microbiota (r > 0.70). Further, miR-378 and 320 family miRNAs involved in adipogenesis were positively correlated to the infant BMI-z-scores, weight, and weight for length-z-scores at 6 months of age. CONCLUSIONS: Maternal dietary source impacts the milk miRNA expression profile. Further, miRNAs were associated with maternal dietary nutrients, milk microbiota and to the infant gut microbiota and infant growth and development. CLINICAL TRIAL: The study is registered in ClinicalTrials.gov. The identification number is NCT03552939.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Feminino , Humanos , Lactente , Dieta , Microbioma Gastrointestinal/genética , Lactação , MicroRNAs/genética , Leite Humano/metabolismo , Nutrientes , Proteínas de Plantas , RNA Ribossômico 16S/genética
6.
Sci Signal ; 16(808): eabo6555, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874883

RESUMO

The cytokine interleukin-17 (IL-17) is secreted by T helper 17 (TH17) cells and is beneficial for microbial control; however, it also causes inflammation and pathological tissue remodeling in autoimmunity. Hence, TH17 cell differentiation and IL-17 production must be tightly regulated, but, to date, this has been defined only in terms of transcriptional control. Phosphatidylinositols are second messengers produced during T cell activation that transduce signals from the T cell receptor (TCR) and costimulatory receptors at the plasma membrane. Here, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) was enriched in the nuclei of human TH17 cells, which depended on the kinase PIP5K1α, and that inhibition of PIP5K1α impaired IL-17A production. In contrast, nuclear PIP2 enrichment was not observed in TH1 or TH2 cells, and these cells did not require PIP5K1α for cytokine production. In T cells from people with multiple sclerosis, IL-17 production elicited by myelin basic protein was blocked by PIP5K1α inhibition. IL-17 protein was affected without altering either the abundance or stability of IL17A mRNA in TH17 cells. Instead, analysis of PIP5K1α-associating proteins revealed that PIP5K1α interacted with ARS2, a nuclear cap-binding complex scaffold protein, to facilitate its binding to IL17A mRNA and subsequent IL-17A protein production. These findings highlight a transcription-independent, translation-dependent mechanism for regulating IL-17A protein production that might be relevant to other cytokines.


Assuntos
Interleucina-17 , Esclerose Múltipla , Humanos , Diferenciação Celular , Citocinas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Esclerose Múltipla/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/metabolismo , Células Th17
7.
Nucleic Acids Res ; 51(20): 11258-11276, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37791873

RESUMO

Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.


Assuntos
Proteínas de Drosophila , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H , MicroRNAs , Ribonuclease III , Animais , Esclerose Amiotrófica Lateral/metabolismo , Drosophila/genética , Drosophila/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Humanos , Ribonuclease III/metabolismo , Proteínas de Drosophila/metabolismo
8.
J Infect Dis ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665976

RESUMO

Cell-based quadrivalent inactivated influenza vaccine has been shown to have higher vaccine effectiveness than traditional egg-based quadrivalent inactivated influenza vaccine. This is observed despite similar levels of serum hemagglutinin antibodies induced by each vaccine. Here, we examine peripheral immune activation following egg-based or cell-based influenza vaccination in a clinical trial in children. Peripheral blood mononuclear cells were isolated and RNA sequenced from 81 study participants (41 Fluzone, egg-based and 40 Flucelvax, cell based) pre- and 7 days post- vaccination. Seroconversion was assessed by hemagglutinin inhibition assay. Differential gene expression was determined and pathway analysis was conducted. Cell-based influenza vaccine induced greater interferon stimulated and innate immune gene activation compared with egg-based influenza vaccine. Participants who seroconverted had increased interferon signaling activation versus those who did not seroconvert. These data suggest that cell-based influenza vaccine stimulates immune activation differently from egg-based influenza vaccine, shedding light on reported differences in vaccine effectiveness.

9.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662237

RESUMO

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS) - known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Despite viral suppression with ART, acute infection led to significant depletion of CNS CD4 T cells, persisting into the chronic phase. These findings underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our results offer insights for potential T cell-focused interventions while also underscoring the challenges in eradicating HIV from the CNS, even with effective ART.

10.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693567

RESUMO

CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. In Brief: Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights: CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.

11.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609254

RESUMO

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

12.
J Hepatol ; 79(6): 1385-1395, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572794

RESUMO

BACKGROUND & AIMS: Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS: We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS: A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS: BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS: Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.


Assuntos
Atresia Biliar , Criança , Animais , Camundongos , Humanos , Atresia Biliar/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Peixe-Zebra/genética , Canadá
13.
Cancer Res Commun ; 3(7): 1173-1188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37426447

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance: Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.


Assuntos
Glioblastoma , Animais , Humanos , Camundongos , Glioblastoma/diagnóstico por imagem , Imunoterapia , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Linfócitos T/metabolismo
14.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37503150

RESUMO

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA)+QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA+QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p <0.05). Notably, interferon γ+ Env-specific Tfh responses were consistently higher with gp140 in MPLA+QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.

15.
Acta Neuropathol ; 146(3): 477-498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369805

RESUMO

GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.


Assuntos
Atrofia Muscular Espinal , Proteínas de Ligação a RNA , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética , Domínio Tudor
16.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
17.
Redox Biol ; 61: 102650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870109

RESUMO

Growing cancer cells effectively evade most programs of regulated cell death, particularly apoptosis. This necessitates a search for alternative therapeutic modalities to cause cancer cell's demise, among them - ferroptosis. One of the obstacles to using pro-ferroptotic agents to treat cancer is the lack of adequate biomarkers of ferroptosis. Ferroptosis is accompanied by peroxidation of polyunsaturated species of phosphatidylethanolamine (PE) to hydroperoxy- (-OOH) derivatives, which act as death signals. We demonstrate that RSL3-induced death of A375 melanoma cells in vitro was fully preventable by ferrostatin-1, suggesting their high susceptibility to ferroptosis. Treatment of A375 cells with RSL3 caused a significant accumulation of PE-(18:0/20:4-OOH) and PE-(18:0/22:4-OOH), the biomarkers of ferroptosis, as well as oxidatively truncated products - PE-(18:0/hydroxy-8-oxo-oct-6-enoic acid (HOOA) and PC-(18:0/HOOA). A significant suppressive effect of RSL3 on melanoma growth was observed in vivo (utilizing a xenograft model of inoculation of GFP-labeled A375 cells into immune-deficient athymic nude mice). Redox phospholipidomics revealed elevated levels of 18:0/20:4-OOH in RSL3-treated group vs controls. In addition, PE-(18:0/20:4-OOH) species were identified as major contributors to the separation of control and RSL3-treated groups, with the highest variable importance in projection predictive score. Pearson correlation analysis revealed an association between tumor weight and contents of PE-(18:0/20:4-OOH) (r = -0.505), PE-18:0/HOOA (r = -0.547) and PE 16:0-HOOA (r = -0.503). Thus, LC-MS/MS based redox lipidomics is a sensitive and precise approach for the detection and characterization of phospholipid biomarkers of ferroptosis induced in cancer cells by radio- and chemotherapy.


Assuntos
Melanoma , Espectrometria de Massas em Tandem , Animais , Camundongos , Humanos , Peroxidação de Lipídeos , Morte Celular , Camundongos Nus , Cromatografia Líquida , Oxirredução
18.
J Virol ; 97(1): e0144222, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541803

RESUMO

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Assuntos
Encefalite Viral , Neurônios , Infecções por Reoviridae , Reoviridae , Animais , Camundongos , Apoptose/genética , Apoptose/imunologia , Quimiocinas/imunologia , Encefalite Viral/imunologia , Encefalite Viral/virologia , Neurônios/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Reoviridae/imunologia , Reoviridae/patogenicidade , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia
19.
Dev Cell ; 57(20): 2397-2411.e9, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283391

RESUMO

Nuclear pores are essential for nuclear-cytoplasmic transport. Whether and how cells change nuclear pores to alter nuclear transport and cellular function is unknown. Here, we show that rat heart muscle cells (cardiomyocytes) undergo a 63% decrease in nuclear pore numbers during maturation, and this changes their responses to extracellular signals. The maturation-associated decline in nuclear pore numbers is associated with lower nuclear import of signaling proteins such as mitogen-activated protein kinase (MAPK). Experimental reduction of nuclear pore numbers decreased nuclear import of signaling proteins, resulting in decreased expression of immediate-early genes. In a mouse model of high blood pressure, reduction of nuclear pore numbers improved adverse heart remodeling and reduced progression to lethal heart failure. The decrease in nuclear pore numbers in cardiomyocyte maturation and resulting functional changes demonstrate how terminally differentiated cells permanently alter their handling of information flux across the nuclear envelope and, with that, their behavior.


Assuntos
Membrana Nuclear , Poro Nuclear , Camundongos , Ratos , Animais , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
20.
Front Cell Dev Biol ; 10: 929495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200046

RESUMO

Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...